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Abstract

A numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly
heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed. A penalty finite
element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations.
The numerical procedure adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number
Ra, 103

6 Ra 6 105 and Prandtl number Pr, 0.7 6 Pr 6 10) with respect to continuous and discontinuous Dirichlet boundary conditions.
Non-uniform heating of the bottom wall produces greater heat transfer rates at the center of the bottom wall than the uniform heating
case for all Rayleigh numbers; however, average Nusselt numbers show overall lower heat transfer rates for the non-uniform heating
case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes,
power law correlations between average Nusselt number and Rayleigh numbers are presented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection in a closed square cavity has occu-
pied the center stage in many fundamental heat transfer
analysis which is of prime importance in certain technolog-
ical applications. In fact, buoyancy-driven convection in a
sealed cavity with differentially heated isothermal walls is a
prototype of many industrial application such as energy
efficient design of buildings and rooms, operation and
safety of nuclear reactors and convective heat transfer asso-
ciated with boilers. Buoyancy driven flows are complex
because of essential coupling between the transport proper-
ties of flow and thermal fields. In particular, internal flow
problems are considerably more complex than external
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ones. This is because at large Rayleigh number (product
of Prandtl and Grashof numbers) classical boundary layer
theory can assume the simplifications for external flow
problems, namely, the region outside the boundary layer
is unaffected by the boundary layer. For confined natural
convection, in contrast, boundary layers form near the
walls but the region external to them is enclosed by the
boundary layers and forms a core region. Since the core
is partially or fully encircled by the boundary layers, the
core flow is not readily determined from the boundary con-
ditions but depend on the boundary layer, which, in turn, is
influenced by the core. The interactions between the
boundary layer and core constitute a major complexity in
the problem. In fact, the situation is even more intricate
because it often appears that more than one global core
flow is possible and flow subregions, such as, cells and
layers, may be embedded in the core. A literature survey
shows that the comprehensive review of these problems
was made by Ostrach [1–3], Gebhart [4] and Hoogendoorn
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Nomenclature

g acceleration due to gravity (m s�2)
J Jacobian of residual equations
k thermal conductivity (W m�1 K�1)
L side of the square cavity (m)
N total number of nodes
Nu local Nusselt number
p pressure (Pa)
P dimensionless pressure
Pr Prandtl number
R residual of weak form
Ra Rayleigh number
T temperature (K)
Th temperature of hot bottom wall (K)
Tc temperature of cold vertical wall (K)
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols

a thermal diffusivity (m2 s�1)
b volume expansion coefficient (K�1)
c penalty parameter
h dimensionless temperature
m kinematic viscosity (m2 s�1)
q density (kg m�3)
U basis functions
w stream function
n horizontal coordinate in a unit square
g vertical coordinate in a unit square

Subscripts

b bottom wall
i residual number
k node number
s side wall

Superscript

n Newton iterative index

Fig. 1. Schematic diagram of the physical system.
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[5] in which each emphasizes essentially various aspects of
the subject.

Perusal of prior numerical investigations by Patterson
and Imberger [6], Nicolette et al. [7], Hall et al. [8], Hyun
and Lee [9], Fusegi et al. [10], Lage and Bejan [11,12], and
Xia and Murthy [13] reveal that several attempts have been
made to acquire a basic understanding of natural convec-
tion flows and heat transfer characteristics in an enclosure.
However, in most of these studies, one vertical wall of the
enclosure is cooled and another one heated while the
remaining top and bottom walls are well insulated. Novem-
ber and Nansteel [14] and Valencia and Frederick [15] have
shown a specific interest to focus on a natural convection
within a rectangular enclosure wherein a bottom heating
and/or a top cooling are involved. Studies on natural con-
vection in rectangular enclosures heated from below and
cooled along a single side or both sides have been carried
out by Ganzarolli and Milanez [16]. Later, the case of heat-
ing from one side and cooling from the top has been ana-
lyzed by Aydin et al. [17] who investigated the influence of
aspect ratio for air-filled rectangular enclosures. Also, Kirk-
patrick and Bohn [18] examined experimentally the case of
high Rayleigh number natural convection in a water-filled
cubical enclosure heated simultaneously from below and
from the side. Recently, Corcione [19] has studied natural
convection in a air-filled rectangular enclosure heated from
below and cooled from above for a variety of thermal
boundary conditions at the side walls. Numerical results
were reported for several values of both width-to-height
aspect ratio of the enclosure and Rayleigh number.

The aim of the present study is to investigate natural
convection in a square cavity when bottom wall is heated
(uniformly and non-uniformly) and top wall is well insu-
lated while two vertical walls are cooled by means of two
constant temperature baths (see Fig. 1). In case of uni-
formly heated bottom wall, the finite discontinuities in tem-
perature distribution appear at the edges of the bottom
wall. The discontinuities can be avoided by choosing a
non-uniform temperature distribution along the bottom
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wall (i.e., non-uniformly heated bottom wall) as discussed
by Minkowycz et al. [20] where an investigation is made
for a mixed convection flow on a vertical plate, which is
either heated or cooled. In the current study, we have used
Galerkin finite element method with penalty parameter to
solve the non-linear coupled partial differential equations
of flow and temperature fields for both uniform and non-
uniform temperature distribution prescribed at the bottom
wall. The results will be illustrated for Ra = 103–105 with
Pr = 0.7–10 to represent influence of natural convection
on heat transfer rates in terms of local and average Nusselt
numbers at the bottom and side walls.

2. Mathematical formulation

The flow model is based on the assumptions that the
fluid is Newtonian and that the properties are constant
with the exception of the density in the body force term
of the momentum equation. The Boussinesq approxima-
tion is invoked for the fluid properties to relate density
changes to temperature changes, and so to couple in this
way the temperature field to the flow field. The governing
equations for natural convection flow using conservation
of mass, momentum and energy can be written as:
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with boundary conditions

uðx; 0Þ ¼ uðx; LÞ ¼ uð0; yÞ ¼ uðL; yÞ ¼ 0

vðx; 0Þ ¼ vðx; LÞ ¼ vð0; yÞ ¼ vðL; yÞ ¼ 0
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where x and y are the distances measured along the hori-
zontal and vertical directions, respectively; u and v are
the velocity components in the x- and y-directions, respec-
tively; T denotes the temperature; m and a are kinematic vis-
cosity and thermal diffusivity, respectively; p is the pressure
and q is the density; Th and Tc are the temperatures at hot
bottom wall and cold vertical walls, respectively; L is the
side of the square cavity.

Using the following change of variables:

X ¼ x
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the governing equations (1)–(4) reduce to non-dimensional
form:
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with boundary conditions

UðX ; 0Þ ¼ UðX ; 1Þ ¼ Uð0; Y Þ ¼ Uð1; Y Þ ¼ 0

V ðX ; 0Þ ¼ V ðX ; 1Þ ¼ V ð0; Y Þ ¼ V ð1; Y Þ ¼ 0

hðX ; 0Þ ¼ 1 or hðX ; 0Þ ¼ sinðpX Þ

hð0; Y Þ ¼ hð1; Y Þ ¼ 0;
oh
oY
ðX ; 1Þ ¼ 0

ð11Þ

Here X and Y are dimensionless coordinates along hori-
zontal and vertical directions, respectively; U and V are,
dimensionless velocity components in the X- and Y-direc-
tions, respectively; h is the dimensionless temperature; P

is the dimensionless pressure; Ra and Pr are Rayleigh
and Prandtl numbers, respectively.

3. Solution procedure

The momentum and energy balance equations (8)–(10)
are solved using the Galerkin finite element method. The
continuity equation (7) will be used as a constraint due to
mass conservation and this constraint may be used to
obtain the pressure distribution (Basak and Ayappa [21];
Reddy [22]). In order to solve equations (8)–(10), we use
the penalty finite element method where the pressure P is
eliminated by a penalty parameter c and the incompressibil-
ity criteria given by Eq. (7) (see Reddy [22]) which results in:
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The continuity equations (7) is automatically satisfied for
large values of c. Typical values of c that yield consistent
solutions are 107 (Basak and Ayappa [21]; Reddy [22]).

Using Eq. (12), the momentum balance equations (8)
and (9) reduce to:
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Expanding the velocity components (U,V) and tempera-
ture (h) using basis set fUkgN

k¼1 as,

U �
XN

k¼1

UkUkðX ; Y Þ; V �
XN

k¼1

V kUkðX ; Y Þ;

and h �
XN

k¼1

hkUkðX ; Y Þ; ð15Þ

for 0 6 X ; Y 6 1;

the Galerkin finite element method yields the following
nonlinear residual equations for Eqs. (13), (14) and (10),
respectively, at nodes of internal domain X:
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Bi-quadratic basis functions with three point Gaussian
quadrature is used to evaluate the integrals in the residual
equations. In Eqs. (16) and (17), the second term contain-
ing the penalty parameter (c) are evaluated with two point
Gaussian quadrature (reduced integration penalty formu-
lation, Reddy [22]). The motivation for reduced integration
is given below. The matrix vector notation for the penalty
finite element equations of the residuals, i.e., Eqs. (16)–(18)
may be expressed in matrix vector notation as:

ðK1 þ cK2Þa ¼ F; ð19Þ
where a denotes the unknown vector, K1, K2 are the matri-
ces obtained from the Jacobian of the residuals. As c tends
to a large value (�107), the constraint equation (i.e., conti-
nuity equation) is satisfied better, which in turn causes the
magnitude of K1 to be negligible when compared with cK2

resulting in:

K2a ¼ F

c
: ð20Þ

This implies that as c tends to infinity, the governing equa-
tions are left with only the constraint condition, i.e., the
continuity equation. Hence, the contributions from the
momentum and energy conservations are completely lost.
In addition, as K2 is nonsingular for large c the resulting
solution obtained from Eq. (20) is trivial. To obtain the
non-trivial solutions for large c (�107) the matrix K2 needs
to be a singular matrix. This is obtained by using two point
Gaussian quadrature for K2 and three point Gaussian
quadrature for K1. In the absence of the above reduced
integration method velocities are underestimated (Reddy
[22]).

The non-linear residual Eqs. (16)–(18) are solved using a
Newton–Raphson procedure to determine the coefficients
of the expansions in Eq. (15). At each iteration, the linear
(3N · 3N) system:

JðanÞ½an � anþ1� ¼ RðanÞ ð21Þ

is solved where n is the iterative index. The elements of the
Jacobian matrix, J(an) contains the derivatives of the resid-
ual equations with respect to velocity components (Uj)’s,
(Vj)’s and the temperature (hj)’s and R(an) is the vector of
residuals. The linear system for each iteration is based on
efficient node numbering of the elements such that the jaco-
bian forms a banded matrix. The iterative process is termi-

nated with the convergence criterion
P
ðRðjÞi Þ

2
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using two-norm of residual vectors.

A nine node bi-quadratic elements with each element
mapped using iso-parametric mapping (Reddy [22]) from
X � Y to a unit square n � g domain has been used. Subse-
quently, the domain integrals in the residual equations are
evaluated using nine node bi-quadratic basis functions in
n � g domain as:

X ¼
X9

i¼1

X iUiðn; gÞ and Y ¼
X9

i¼1

Y iUiðn; gÞ; ð22Þ

where Ui(n,g) are the local bi-quadratic basis functions on
the n � g domain. The integrals in Eqs. (16)–(18) can be
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where
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4. Evaluation of stream function and Nusselt number

4.1. Stream function

The fluid motion is displayed using the stream function
w obtained from velocity components U and V. The rela-
tionships between stream function, w (Batchelor [23]) and
velocity components for two dimensional flows are:

U ¼ ow
oY

and V ¼ � ow
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; ð24Þ

which yield a single equation
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Using the above definition of the stream function, the po-
sitive sign of w denotes anti-clockwise circulation and the
clockwise circulation is represented by the negative sign
of w. Expanding the stream function (w) using the basis
set {U} as w ¼

PN
k¼1wkUkðX ; Y Þ and the relation for U

and V from Eq. (15), the Galerkin finite element method
yields the following linear residual equations for Eq. (25).
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The no-slip condition is valid at all boundaries as there is no
cross flow, hence w = 0 is used as residual equations at the
nodes for the boundaries. The bi-quadratic basis function is
used to evaluate the integrals in Eq. (26) and w’s are
obtained by solving the N linear residual equation (26).

4.2. Nusselt number

The heat transfer coefficient in terms of the local Nusselt
number (Nu) is defined by:

Nu ¼ � oh
on
; ð27Þ

where n denotes the normal direction on a plane. The nor-
mal derivative is evaluated by the bi-quadratics basis set in
n � g domain using Eqs. (22) and (23). The local Nusselt
numbers at the bottom wall (Nub) and at the side wall
(Nus) are defined as:
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The average Nusselt numbers at the bottom and side walls
are:
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5. Results and discussion

5.1. Numerical tests

The computational domain consists of 20 · 20 bi-qua-
dratic elements which correspond to 41 · 41 grid points.
The bi-quadratic elements with lesser number of nodes
smoothly capture the non-linear variations of the field vari-
ables which are in contrast with finite difference/finite vol-
ume solutions available in the literature [10–12]. In order to
assess the accuracy of the numerical procedure, the algo-
rithm based on the grid size (41 · 41) for a square enclosure
with a side wall heated were compared and are in agree-
ment with the work of Mallinson and Vahl Davis [24] for
Ra = 103–106. Comparisons are not shown in this paper.

Computations have been carried out for various values
of Ra = 103–105 and Pr = 0.7–10 with uniform and non-
uniform bottom wall heating where side walls are cooled
and the top wall is well insulated. The jump discontinuities
in Dirichlet type wall boundary conditions at the corner
points (see Fig. 1) correspond to computational singulari-
ties. In particular, the singularity at the corner nodes of
the bottom wall needs special attention. The grid size
dependent effect of the temperature discontinuity at the
corner points on the local (and the overall) Nusselt num-
bers tend to increase as the mesh spacing at the corner is
reduced. One way for handling the problem is assuming
the average temperature of the two walls at the corner
and keeping the adjacent grid-nodes at the respective wall
temperatures as suggested by Ganzarolli and Milanez
[16]. This procedure is still grid dependent unless a suffi-
ciently refined mesh is implemented. Once any corner
formed by the intersection of two differently heated bound-
ary walls is assumed at the average temperature of the adja-
cent walls, the optimal grid size obtained for each
configuration corresponds to the mesh spacing over which
further grid refinements lead to grid invariant results in
both heat transfer rates and flow fields. Similar observa-
tions were also reported by Corcione [19].

In the current investigation, Gaussian quadrature based
finite element method provides smooth solutions in the
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computational domain including the corner regions as
evaluation of residuals depends on interior gauss points
and thus the effect of corner nodes are less pronounced in
the final solution. In general, the Nusselt numbers for finite
difference/finite volume based methods are calculated at
any surface using some interpolation functions which are
avoided in the current work. The present finite element
approach offers special advantage on evaluation of local
Nusselt number at the bottom and side walls as the element
basis functions are used to evaluate the heat flux. It may be
noted that the number of grid points in the current study is
41 · 41 and these nodal numbers are in agreement with the
number of grid points of 33 · 33 as illustrated by Corcione
[19]. In addition, the percent changes of the average Nus-
selt numbers (Nub and Nus) and the maximum horizontal
and vertical dimensionless velocity components at an
assigned vertical and horizontal plane across the cavity
are within 0.1–1%.

5.2. Effects of Rayleigh number: uniform heating at

bottom wall

Figs. 2–5 illustrate the stream function and isotherm
contours of the numerical results for various Ra = 103–
105 and Pr = 0.7–10 when the bottom wall is uniformly
heated. As expected, due to the cold vertical walls, fluids
rise up from middle portion of the bottom wall and flow
down along the two vertical walls forming two symmetric
rolls with clockwise and anti-clockwise rotations inside
the cavity. At Ra = 103, the magnitudes of stream function
are very low and the heat transfer is primarily due to con-
duction. During conduction dominant heat transfer, the
temperature contours with h = 0.1 occur symmetrically
near the side walls of the enclosure. The other temperature
contours with h P 0.2 are smooth curves which span the
entire enclosure and they are generally symmetric with
respect to the vertical center line. The temperature contours
as indicated in Fig. 2 remains invariant up to Ra < 5 · 103.
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Fig. 2. Contour plots for uniform bottom heating, h(X, 0) = 1, with Pr = 0.7 an
positive signs of stream functions, respectively.
At Ra = 5 · 103, the circulation near the central regimes
are stronger and consequently, the temperature contour
with h = 0.2 starts getting shifted towards the side wall
and they break into two symmetric contour lines (Fig. 3).
The presence of significant convection is also exhibited in
other temperature contours lines which start getting
deformed and pushed towards the top plate.

As Rayleigh number increases to 105, the buoyancy dri-
ven circulation inside the cavity also increases as seen from
the greater magnitudes of the stream functions (Fig. 4). The
circulations are greater near the center and least at the wall
due to no slip boundary conditions. The greater circulation
in each half of the cavity follows a progressive wrapping
around the centers of rotation, and a more pronounced
compression of the isotherms toward the boundary sur-
faces of the enclosures occur. Consequently, at Ra = 105,
the temperature gradients near both the bottom and side
walls tend to be significant leading to the development of
a thermal boundary layer. Due to greater circulations near
the central core at the top half of the enclosure, there are
small gradients in temperature whereas a large stratifica-
tion zone of temperature is observed at the vertical symme-
try line due to stagnation of flow. Fig. 2 shows that the
thermal boundary layer develops even approximately
80% of the cavity for Ra = 103 whereas for Ra = 105, the
isotherms presented in Fig. 4 indicate that the thermal
boundary layer develops almost throughout the entire
cavity.

Comparison of Figs. 4 and 5 show that as Pr increases
from 0.7 to 10, the values of the stream function and iso-
therms in the core cavity increase. Although the stream
functions look qualitatively similar to that with Pr = 0.7,
the greater circulation near the central regime of each half
distributes greater heat resulting in greater temperature
near the central symmetric vertical plane as seen in
Fig. 5. It may be noted that the temperature varies within
0.4–0.5 for Pr = 0.7 (Fig. 4) near the central core regime at
the top half of the enclosure whereas the temperature varies
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d Ra = 103. Clockwise and anti-clockwise flows are shown via negative and
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Fig. 3. Contour plots for uniform bottom heating, h(X, 0) = 1, with Pr = 0.7 and Ra = 5 · 103. Clockwise and anti-clockwise flows are shown via negative
and positive signs of stream functions, respectively.
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within 0.5–0.6 for Pr = 10 as seen in Fig. 5. Due to greater
circulation at Pr = 10, the zone of stratification of temper-
ature at the central symmetric line is reduced.

5.3. Effects of Rayleigh number: non-uniform heating at

bottom wall

Stream function contours and isotherms are shown in
Figs. 6–8 for Ra = 103–105 and Pr = 0.7–10 when the bot-
tom wall is non-uniformly heated. As seen earlier, uniform
heating of the bottom wall causes a finite discontinuity in
Dirichlet type boundary conditions for the temperature
distribution at the edges of the bottom wall. In contrast,
the non-uniform heating removes the singularities at the
edges of the bottom wall and provides a smooth tempera-
ture distribution in the entire cavity. Due to the non-
uniform heating of the bottom wall for Ra = 103 and
Pr = 0.7, thermal boundary layer develops only over 60%
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of the cavity (Fig. 6), which is less compared to the uniform
heating case. The conduction dominant heat transfer mode
is observed up to Ra = 2 · 104 which is in contrast with the
uniform heating case where the critical Rayleigh number is
around 5000. It may be noted that the temperature at the
bottom wall is non-uniform and a maxima in temperature
occurs at the center. Therefore, greater heat transfer rates
occur at the center as illustrated in the next section.

At Ra = 105, the circulation pattern is qualitatively
similar to the uniform heating case (Fig. 7). Due to non-
uniform bottom heating, the heating rate near the wall is
generally lower which induces less buoyancy resulting in
lower thermal gradient throughout the domain. The uni-
formity in temperature distribution and least temperature
gradient are still observed at the central core regime within
the top half of the domain. The lower buoyancy effect also
leads to a large zone of stratification of temperature at the
vertical line of symmetry (Fig. 7). The effect of Prandtl
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number is also pronounced for Ra = 105 as seen in Fig. 8
where the greater circulation causes more heat to be dis-
tributed in the central regime. However, compared to uni-
form heating cases, the values of temperature contours are
lower near the central and top portion of the enclosure for
non-uniform heating. The temperature contours are highly
dense near the bottom wall which may indicate a lower
heating rate at the top as well as central regions of the
enclosure.

5.4. Heat transfer rates: local and average Nusselt numbers

Fig. 9 shows the effects of Ra and Pr on the local Nusselt
numbers at the bottom and side walls (Nub,Nus). For uni-
form heating of the bottom wall, the heat transfer rate or
Nub is very high at the edges of the bottom wall due to
the discontinuities present in the temperature boundary
conditions at the edges and reduces towards the center of
the bottom wall with the minimum value at the center
(Fig. 9(a)). On the contrary, for Ra = 103 with non-uni-
formly heated bottom wall, Nub increases from zero at both
the edges of the bottom wall towards the center with its
maximum value at the center. Further, at Ra = 105, non-
uniform heating produces a sinusoidal type of local heat
transfer rate with minimum values at the edges as well as
at the center of the bottom wall. The physical reason for this
type of behavior is due to the higher values of the stream
function (i.e., high flow rate) for Ra = 105 in the middle
of the first and second half of the cavity. As Pr increases
from 0.7 to 10, the local Nusselt number at the bottom wall
(Nub) increases slightly as seen in Fig. 9(a). It may be noted
that for all values of Prandtl and Rayleigh numbers, non-
uniform heating enhances the heat transfer at the central
regime only. The temperature contours diverge from the
corner points toward the central vertical line for uniform
heating and therefore local Nusselt number is a monotoni-
cally decreasing function with distance. In contrast, for
non-uniform heating the temperature contours are com-
pressed around the intermediate zones between corners
and the vertical line of symmetry, and local Nusselt number
is maximum at around X = 0.3 and 0.7.

Fig. 9(b) illustrates the heat transfer rate at the side wall.
The local Nusselt number (Nus) decreases with distance at
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the side or cold wall for Ra = 103, Pr = 0.7 for both uni-
form and non-uniform heating. It may be noted that, the
heat transfer rate initially decreases and later increases with
distance for Ra = 105 with Pr = 0.7 and 10. At higher Ray-
leigh numbers, the significant circulation as seen in Figs.
4,5,7 and 8 results in highly dense contours at the top por-
tion of the side walls and these dense temperature contours
are in contrast with the conduction dominant cases as seen
in Figs. 2 and 6. Further, it is observed that the tempera-
ture contours are compressed towards the side walls away
from the corner points at the bottom. Therefore, the heat
fluxes are enhanced at the regions away from bottom cor-
ner points. The heat transfer rates are qualitatively similar,
but reduced for non-uniform bottom wall heating as com-
pared to uniform heating.

The overall effect on the heat transfer rates are shown in
Fig. 10(a)–(d), where the distributions of the average Nus-
selt number of bottom and side walls, respectively, are plot-
ted versus the logarithmic Rayleigh number. Fig. 10(a) and
(b) (cases a and b) illustrate uniform heating and Fig. 10(c)
and (d) (cases c and d) illustrate non-uniform heating. For
all these cases, it is observed that average Nusselt numbers
for both the bottom and side walls remain constant up to
Ra = 5000 for uniform heating and upto Ra = 2 · 104 for
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Fig. 10. Variation of average Nusselt number with Rayleigh number for
uniform heating [(a) and (b)] and non-uniform heating [(c) and (d)] with
Pr = 0.7; (—) and Pr = 10; (- - -). The insets show the log–log plot of
average Nusselt number versus Rayleigh number for convection dominant
regimes.
non-uniform heating. Hence, dominant heat conduction
mode corresponding to a larger range of Rayleigh numbers
produces overall lower heat transfer rates for non-uniform
heating. The insets show the log–log plot for average
Nusselt number versus Rayleigh number for convection
dominant regimes. The log–log linear plot is obtained with
more than 20 data set. A least square curve is fitted and the
overall error is within 1%. The following correlations are
obtained for cases a, b, c and d as follows:

Cases a and b : uniform heating ðRa P 5000Þ

Nub ¼ 2Nus

¼ 1:6219Ra0:145; Pr ¼ 0:7

¼ 1:2238Ra0:177; Pr ¼ 10 ð32Þ

Cases c and d : non-uniform heating ðRa P 2� 104Þ

Nub ¼ 2Nus

¼ 0:2939Ra0:249; Pr ¼ 0:7

¼ 0:2129Ra0:289; Pr ¼ 10 ð33Þ
6. Conclusions

The prime objective of the current investigation is to
study the effect of continuous and discontinuous Dirichlet
boundary conditions on the flow and heat transfer charac-
teristics due to natural convection within a square enclo-
sure. The penalty finite element method helps to obtain
smooth solutions in terms of stream functions and iso-
therm contours for wide ranges of Pr and Ra with uniform
and non-uniform heating of the bottom wall. It has been
demonstrated that the formation of boundary layers for
both the heating cases occurs. It is also observed that ther-
mal boundary layer develops over approximately 80% of
the cavity for uniform heating whereas the boundary layer
is approximately 60% for non-uniform heating when
Ra = 103. The heat transfer rate is very high at the edges
of the bottom wall and decreases to a minimum value at
the center due to uniform heating which is in contrast with
the lower heat transfer rate at the edges due to non-uni-
form heating for Ra = 103. The conduction dominant heat
transfer modes occurs at Ra 6 5 · 103 during uniform heat-
ing of bottom wall whereas it occurs at Ra 6 2 · 104 for
non-uniform heating.

At the onset of convection dominant mode, the temper-
ature contour lines get compressed toward the side walls
and they tend to get deformed towards the upward direc-
tion. During Ra = 105, the thermal boundary layer devel-
ops near the bottom and side walls and the central
regime near the top surface has least temperature gradient
for both uniform and non-uniform heating. The local Nus-
selt numbers at the bottom and side walls represent various
interesting heating features. The local Nusselt number at
the bottom wall is least at the center for uniform heating
and there are two minimum heat transfer zones at the
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center and the corner points for non-uniform heating. The
non-uniform heating exhibits greater heat transfer rates at
the center of the bottom wall than that with uniform heat-
ing for all Rayleigh numbers. The local Nusselt number at
the side wall is found to decrease with distance for conduc-
tion dominant heat transfer whereas due to highly dense
contour lines near the top portion of the side wall, the local
Nusselt number is found to increase for both uniform and
non-uniform heating cases. The average Nusselt number
indicates overall lower heat transfer rates for non-uniform
heating. The average Nusselt number is found to follow a
power law variation with Rayleigh number for convection
dominant regimes.
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